\[\boxed{\mathbf{327}.}\]
\[ax^{4} + bx^{3} + cx^{2} + bx + a = 0\]
\[Заменим\ x + \frac{1}{x} = t:\]
\[ax^{4} + bx^{3} + cx^{2} + bx + a =\]
\[= 0\ \ \ \ \ |\ :x^{2}\]
\[ax^{2} + bx + c + \frac{b}{x} + \frac{a}{x^{2}} = 0\]
\[a \cdot \left( x^{2} + \frac{1}{x^{2}} \right) +\]
\[+ b\left( x + \frac{1}{x} \right) + c = 0\]
\[a \cdot \left( t^{2} - 2 \right) + bt + c = 0\]
\[\left( x + \frac{1}{x} \right)^{2} = t \rightarrow x^{2} +\]
\[+ \frac{1}{x^{2}} = t^{2} - 2.\]
\[Получаем:\]
\[at^{2} + bt + c - 2a = 0.\]
\[Что\ и\ требовалось\ доказать.\]