\[\boxed{\mathbf{328}.}\]
\[1)\ \left( 2x^{2} - x - 1 \right)\left( 2x^{2} - x - 5 \right) -\]
\[- 5 = 0\]
\[t = 2x^{2} - x:\]
\[(t - 1)(t - 5) - 5 = 0\]
\[t^{2} - 6t + 5 - 5 = 0\]
\[t^{2} - 6t = 0\]
\[t(t - 6) = 0\]
\[t = 0;\ \ \ t = 6.\]
\[t = 0:\]
\[2x^{2} - x = 0\]
\[x(2x - 1) = 0\]
\[x = 0;\ \ x = 0,5.\]
\[t = 6:\]
\[2x^{2} - x = 6\]
\[2x^{2} - x - 6 = 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{1 + 7}{4} = 2;\ \]
\[\ x_{2} = \frac{1 - 7}{4} = - 1,5.\]
\[Ответ:x = - 1,5;0;0,5;2.\]
\[2)\ \left( 3x^{2} - x - 4 \right)\left( 3x^{2} - x + 2 \right) -\]
\[- 7 = 0\]
\[t = 3x^{2} - x:\]
\[(t - 4)(t + 2) - 7 = 0\]
\[t^{2} - 2t - 8 - 7 = 0\]
\[t^{2} - 2t - 15 = 0\]
\[D_{1} = 1 + 15 = 16\]
\[t_{1} = 1 + 4 = 5;\ \ \]
\[t_{2} = 1 - 4 = - 3.\]
\[t = 5:\]
\[3x^{2} - x = 5\]
\[3x^{2} - x - 5 = 0\]
\[D = 1 + 60 = 61\]
\[x = \frac{1 \pm \sqrt{61}}{6}.\]
\[t = - 3:\]
\[3x^{2} - x = - 3\]
\[3x^{2} - x + 3 = 0\]
\[D = 1 - 36 = - 35 < 0\]
\[нет\ корней.\]
\[Ответ:x = \frac{1 \pm \sqrt{61}}{6}.\]