\[\boxed{\mathbf{321}.}\]
\[x^{3} + x^{2} + ax + b = 0;\ \ \]
\[x_{1} = 3;\ \ x_{2} = - 4:\]
\[P(3) = 27 + 9 + 3a + b =\]
\[= 36 + 3a + b = 0;\]
\[P( - 4) = - 64 + 16 - 4a + b =\]
\[= - 48 - 4a + b = 0.\]
\[\left\{ \begin{matrix} 3a + b = - 36\ \ \\ - 4a + b = 48\ \ \\ \end{matrix} \right.\ ( - )\]
\[7a = - 84\]
\[a = - 12.\]
\[b = 48 + 4a = 48 - 48 = 0.\]
\[\left\{ \begin{matrix} a = - 12 \\ b = 0\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{3} + x^{2} - 12x = 0\]
\[x\left( x^{2} + x - 12 \right) = 0\]
\[x(x - 3)(x + 4) = 0.\]
\[Ответ:a = - 12;\ \ b = 0;\ \ x_{3} = 0.\]