\[\boxed{\mathbf{322}.}\]
\[x_{1};\ \ x_{2};\ \ x_{3} - корни\ уравнения.\]
\[x^{3} + ax^{2} + bx + c =\]
\[= \left( x - x_{1} \right)\left( x - x_{2} \right)\left( x - x_{3} \right)\]
\[\left( x^{2} - xx_{1} - xx_{2} + x_{1}x_{2} \right)\left( x - x_{3} \right) =\]
\[= x^{3} - x^{2}x_{1} - x^{2}x_{2} + xx_{1}x_{2} -\]
\[- x^{2}x_{3} + xx_{1}x_{2} + xx_{2}x_{3} -\]
\[- x_{1}x_{2}x_{3}\]
\[x^{3} + ax^{2} + bx + c =\]
\[= x^{3} + \underset{- a}{\overset{\left( - x_{1} - x_{2} - x_{3} \right)}{︸}}x^{2} +\]
\[+ \underset{b}{\overset{\left( x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3} \right)}{︸}}x -\]
\[- \underset{- c}{\overset{x_{1}x_{2}x_{3}}{︸}}.\]
\[Что\ и\ требовалось\ доказать.\]