Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 320

Авторы:
Тип:учебник

Задание 320

\[\boxed{\mathbf{320}.}\]

\[1)\ x^{2}(x - 2)(6x + 1) +\]

\[+ x(5x + 3) = 1\]

\[x^{2}\left( 6x^{2} - 12x + x - 2 \right) + 5x^{2} +\]

\[+ 3x - 1 = 0\]

\[6x^{4} - 11x^{3} - 2x^{2} + 5x^{2} + 3x -\]

\[- 1 = 0\]

\[6x^{4} - 11x^{3} + 3x^{2} - 3x - 1\]

\[6\] \[- 11\] \[3\] \[3\] \[- 1\]
\[1\] \[6\] \[- 5\] \[- 2\] \[1\] \[0\]
\[1\] \[6\] \[1\] \[- 1\] \[0\]

\[P(x) = (x - 1)^{2}\left( 6x^{2} + x - 1 \right) = 0\]

\[6x^{2} + x - 1 = 0\]

\[D = 1 + 24 = 25\]

\[x_{1} = \frac{- 1 + 5}{12} = \frac{4}{12} = \frac{1}{3};\ \ \]

\[x_{2} = \frac{- 1 - 5}{12} = - \frac{1}{2}.\]

\[Ответ:x = - \frac{1}{2};\ \ \frac{1}{3};\ \ 1.\]

\[2)\ x^{2}(3x + 1) - \left( x^{2} + 1 \right)^{2} = 3\]

\[3x^{3} + x^{2} - x^{4} - 2x^{2} -\]

\[- 1 - 3 = 0\]

\[x^{4} - 3x^{3} + x^{2} + 4 = 0\]

\[Делители:\ \pm 1;\ \pm 2;\ \pm 3.\]

\[1\] \[- 3\] \[1\] \[0\] \[4\]
\[2\] \[1\] \[- 1\] \[- 1\] \[- 2\] \[0\]
\[2\] \[1\] \[1\] \[1\] \[0\]

\[P(x) = (x - 2)^{2}\left( x^{2} + x + 1 \right) = 0\]

\[x^{2} + x + 1 = 0\]

\[D = 1 - 4 < 0\]

\[нет\ корней.\]

\[Ответ:x = 2.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам