\[\boxed{\mathbf{319}.}\]
\[1)\ (2x + 1)\left( x^{3} + 1 \right) + x^{2} =\]
\[= 2x\left( x^{3} + 3 \right) - 5\]
\[2x^{4} + 2x + x^{3} + 1 + x^{2} =\]
\[= 2x^{4} + 6x - 5\]
\[x^{3} + x^{2} - 4x + 6 = 0\]
\[Делители:\ \pm 1;\ \pm 2;\ \pm 3;\ \pm 6.\]
\[1\] | \[1\] | \[- 4\] | \[6\] | |
---|---|---|---|---|
\[- 3\] | \[1\] | \[- 2\] | \[2\] | \[0\] |
\[P(x) =\]
\[= (x + 3)\left( x^{2} - 2x + 2 \right) = 0\]
\[x^{2} - 2x + 2 = 0\]
\[D_{1} = 1 - 2 = - 1 < 0\]
\[нет\ корней.\]
\[Ответ:x = - 3.\]
\[2)\ \left( 2x^{2} - 1 \right)^{2} + x(2x - 1)^{2} =\]
\[= (x + 1)^{2} + 16x^{2} - 6\]
\[4x^{4} - 4x^{2} + 1 + 4x^{3} - 4x^{2} +\]
\[+ x = x^{2} + 2x + 1 + 16x^{2} - 6\]
\[4x^{4} + 4x^{3} - 25x^{2} - x + 6 = 0\]
\[Делители:\ \pm 1;\ \pm 2;\ \pm 3;\ \pm 6.\]
\[4\] | \[4\] | \[- 25\] | \[- 1\] | \[6\] | |
---|---|---|---|---|---|
\[2\] | \[4\] | \[12\] | \[- 1\] | \[- 3\] | \[0\] |
\[- 3\] | \[4\] | \[0\] | \[- 1\] | \[0\] |
\[P(x) = (x - 2)(x + 3)\left( 4x^{2} - 1 \right) =\]
\[= (x - 2)(x + 3)(2x - 1)(2x + 1) = 0\]
\[Ответ:\ x = - 3;\ \ x = 2;\ \ \]
\[x = \pm 0,5.\]