\[\boxed{\mathbf{271}.}\]
\[13n^{2} + 1;\]
\[Пусть\ n\ не\ кратно\ 3:\]
\[n = 3n_{1} + 1;\ \ n = 3n_{1} + 2.\]
\[\textbf{а)}\ n = 3n_{1} + 1:\]
\[13 \cdot \left( 3n_{1} + 1 \right)^{2} + 1 =\]
\[= 13 \cdot \left( 9n_{1}^{2} + 6n_{1} + 1 \right) + 1 =\]
\[= 13 \cdot 9n_{1}^{2} + 13 \cdot 6n_{1} + 13 + 1;\]
\[(13 + 1 = 14) - не\ кратно\ 3.\]
\[\textbf{б)}\ n = 3n_{1} + 2:\]
\[13 \cdot \left( 3n_{1} + 2 \right)^{2} + 2 =\]
\[= 13 \cdot \left( 9n_{1}^{2} + 12n_{1} + 4 \right) + 2 =\]
\[= 13 \cdot 9n_{1}^{2} + 13 \cdot 12n_{1} + 52 + 2;\]
\[52 + 2 = 54 - не\ кратно\ 3.\]
\[13n^{2} + 1 - не\ кратно\ 3.\]
\[Что\ и\ требовалось\ доказать.\]