\[\boxed{\mathbf{262}.}\]
\[1)\ 28 \cdot 20^{15} - 10 \cdot 18^{13}\ \ \vdots 19\]
\[28 \equiv 9(mod\ 19);\ \]
\[\ 20 \equiv 1(mod\ 19);\]
\[18 \equiv - 1(mod\ 19);\]
\[a = 9 \cdot 1^{15} - 10 \cdot ( - 1)^{13} =\]
\[= 9 + 10 = 19 \equiv 0(mod\ 19).\]
\[2)\ 3^{3} \cdot 23^{8} + 5^{8} \cdot 2^{14} =\]
\[= 27 \cdot 23^{8} + 10^{8} \cdot 2^{6}\ \vdots 13\]
\[3^{3} = 27 \equiv 1(mod\ 13);\]
\[23 \equiv 10(mod\ 13);2^{3} =\]
\[= 8 \equiv - 5(mod\ 13);\]
\[a = 1 \cdot 10^{8} + 10^{8} \cdot ( - 5)^{2} =\]
\[= 10^{8}(1 + 25) =\]
\[= 10^{8} \cdot 26 \equiv 0(mod\ 13).\]
\[3)\ 125^{24} - 1825 =\]
\[= \left( 25^{3} \right)^{24} - \underset{\vdots 600}{\overset{1800}{︸}} - 25\ \]
\[25^{2} = 625 \equiv 25(mod\ 600);\ \]
\[a = 25 - 25 \equiv 0(mod\ 600);\]
\[125^{24} - 1825\ \vdots 600.\]
\[4)\ 100^{20} - 50 \cdot 16^{5} =\]
\[= 2^{20} \cdot 50^{20} - 50 \cdot \left( 2^{4} \right)^{5} =\]
\[= 2^{20} \cdot 50^{20} - 50 \cdot 2^{20} =\]
\[= 2^{20} \cdot \left( 50^{20} - 50 \right)\]
\[50 \equiv 1(mod\ 49);\ \ \]
\[1^{20} - 1 = 1 - 1 = 0.\]
\[100^{20} - 50 \cdot 16^{5}\ \vdots 49.\]
\[5)\ 42^{365} + 53^{247}\ \ \vdots 5\]
\[42 \equiv 2(mod\ 5);53 \equiv 3(mod\ 5);\]
\[2 + 3(mod\ 5) = 0(mod\ 5).\]
\[6)\ 71^{325} + 41^{135}\ \vdots 7\]
\[71 \equiv 1(mod\ 7);\ \ \]
\[41 \equiv - 1(mod\ 7);\]
\[a = 1^{325} + ( - 1)^{135} =\]
\[= 1 - 1 \equiv 0(mod\ 7).\]