\[\boxed{\mathbf{261}.}\]
\[1)\ 25^{26} + 29^{36} \equiv 2(mod\ 3);\]
\[25 \equiv 1(mod\ 3);29 \equiv 1(mod\ 3);\]
\[1^{26} + 1^{36} = 1 + 1 = 2.\]
\[2)\ 2^{367} + 43 \equiv 1(mod\ 17);\]
\[2^{4} \equiv 16 \equiv - 1(mod\ 17);\]
\[43 \equiv 9(mod\ 17);\]
\[a = 2^{3} \cdot \left( 2^{4} \right)^{91} + 43 =\]
\[= 8 \cdot ( - 1)^{91} + 9 =\]
\[= - 8 + 9 \equiv 1(mod\ 17).\]
\[3)\ 2^{1995} + 5 \cdot 10^{3} \equiv 1(mod\ 3);\]
\[2^{2} = 4 \equiv 1(mod\ 3);\]
\[10 \equiv 1(mod\ 3);\]
\[a = 2 \cdot \left( 2^{2} \right)^{997} + 5 \cdot 10^{3} =\]
\[= 2 \cdot 1^{997} + 5 \cdot 1 =\]
\[= 7 \equiv 1(mod\ 3).\]
\[4)\ 2^{76} + 3 \cdot 10^{18} \equiv 1\ (mod\ 9);\]
\[2^{3} = 8 \equiv - 1(mod\ 9);\]
\[10 \equiv 1(mod\ 9);\]
\[a = 2 \cdot \left( 2^{3} \right)^{25} + 3 \cdot 10^{18} =\]
\[= 2 \cdot ( - 1)^{25} +\]
\[+ 3 \cdot 1^{18} \equiv 1(mod\ 9).\]