\[\boxed{\mathbf{257}.}\]
\[1)\ n^{3} + 3n^{2} + 5n + 3 = n^{3} +\]
\[+ 2n^{2} + 3n + n^{2} + 2n + 3 =\]
\[= n\left( n^{2} + 2n + 3 \right) +\]
\[+ \left( n^{2} + 2n + 3 \right) =\]
\[= (n + 1)\left( n^{2} + 2n + 3 \right).\]
\[Пусть\ (n + 1)\ не\ кратно\ 3;\]
\[тогда\ n + 1 = 3n_{1} + 1\ или\ \]
\[n + 1 = 3n_{1} + 2.\]
\[\textbf{а)}\ n + 1 = 3n_{1} + 1:\]
\[n = 3n_{1}\]
\[\left( 9n_{1}^{2} + 6n_{1} + 3 \right)\ \vdots 3;\]
\[(n + 1)\left( n^{2} + 2n + 3 \right) \vdots 3.\]
\[\textbf{б)}\ n + 1 = 3n_{1} + 2:\]
\[n = 3n_{1} + 1\]
\[\left( 3n_{1} + 1 \right)^{2} + 2 \cdot \left( 3n_{1} + 1 \right) +\]
\[+ 3 = 9n_{1}^{2} + 6n_{1} + 1 + 6n_{1} +\]
\[+ 2 + 3 =\]
\[= 9n_{1}^{2} + 12n_{1} + 6 \vdots 3.\]
\[(n + 1)\left( n^{2} + 2n + 3 \right) \vdots 3.\]
\[Что\ и\ требовалось\ доказать.\]