\[\boxed{\mathbf{250}.}\]
\[a;b;c \in N;\ \ a;b;c\ не\ кратны\ 3.\]
\[Так\ как\ a;b;c\ не\ кратны\ трем,\]
\[\ то\ может\ быть\ в\ остатке\ \]
\[1\ или\ 2.\]
\[1)\ Пусть\ a = 3a_{1} + 1;\ \ \]
\[b = 3b_{1} + 1;\ \ c = 3c_{1} + 1:\]
\[\left( 3a_{1} + 1 \right)^{2} + \left( 3b_{1} + 1 \right)^{2} +\]
\[+ \left( 3c_{1} + 1 \right)^{2} =\]
\[= 9a_{1}^{2} + 6a_{1} + 1 + 9b_{1}^{2} + 6b_{1} +\]
\[+ 1 + 9c_{1}^{2} + 6c_{1} + 1 =\]
\[= 9a_{1}^{2} + 6a_{1} + 9b_{1}^{2} + 6b_{1} +\]
\[+ 9c_{1}^{2} + 6c_{1} + 3 \rightarrow кратно\ 3.\]
\[2)\ Пусть\ a = 3a_{1} + 1;\]
\[b = 3b_{1} + 1;c = 3a_{1} + 2:\]
\[\left( 3a_{1} + 1 \right)^{2} + \left( 3b_{1} + 1 \right)^{2} +\]
\[+ \left( 3c_{1} + 2 \right)^{2} =\]
\[= 9a_{1}^{2} + 6a_{1} + 1 + 9b_{1}^{2} + 6b_{1} +\]
\[+ 1 + 9c_{1}^{2} + 12c_{1} + 4 =\]
\[= 9a_{1}^{2} + 6a_{1} + 9b_{1}^{2} + 6b_{1} +\]
\[+ 9c_{1}^{2} + 12c_{1} + 6 \rightarrow кратно\ 3.\]
\[Аналогично\ получаем\ при\]
\[\ b = 3b_{1} + 2\ или\ a = 3a_{1} + 2.\]
\[3)\ Пусть\ a = 3a_{1} + 2;\ \ \]
\[b = 3b_{1} + 2;\ \ c = 3c_{1} + 2:\]
\[\left( 3a_{1} + 2 \right)^{2} + \left( 3b_{1} + 2 \right)^{2} +\]
\[+ \left( 3n_{1} + 2 \right)^{2} =\]
\[= 9 \cdot \left( a_{1}^{2} + b_{1}^{2} + c_{1}^{2} \right) +\]
\[+ 12 \cdot \left( a_{1} + b_{1} + c_{1} \right) +\]
\[+ 12\ \rightarrow кратно\ 3.\]
\[4)\ Пусть\ a = 3a_{1} + 1;\]
\[\ \ b = 3b_{1} + 2;\ \ c = 3c_{1} + 2:\]
\[\left( 3a_{1} + 1 \right)^{2} + \left( 3b_{1} + 2 \right)^{2} +\]
\[+ \left( 3n_{1} + 2 \right)^{2} =\]
\[= 9 \cdot \left( a_{1}^{2} + b_{1}^{2} + c_{1}^{2} \right) +\]
\[+ 6 \cdot \left( a_{1} + 2b_{1} + {2c}_{1} \right) +\]
\[+ 9 \rightarrow кратно\ 3.\]
\[Аналогично\ для\ b = 3b_{1} + 1\ \]
\[или\ для\ c = 3c_{1} + 1.\]
\[Получаем:\]
\[a^{2} + b^{2} + c^{2}\ \vdots 3.\]
\[Что\ и\ требовалось\ доказать.\]