\[\boxed{\mathbf{251}.}\]
\[a = \frac{n^{4} - n^{3} + 2n^{2}}{n^{2} + 1} =\]
\[= \frac{n^{4} + n^{2} - n^{3} - n + n + n^{2}}{n^{2} + 1} =\]
\[= \frac{n^{2}\left( n^{2} + 1 \right)}{n^{2} + 1} - \frac{n\left( n^{2} + 1 \right)}{n^{2} + 1} +\]
\[+ \frac{n + n^{2}}{n^{2} + 1} =\]
\[= n^{2} - n + \frac{n^{2} + n}{n^{2} + 1};\ \ n \in Z;\]
\[\text{\ \ }n^{2} \in Z.\]
\[n = - 1:\]
\[\frac{- 1 + ( - 1)^{2}}{( - 1)^{2} + 1} = 0.\]
\[n = 0:\]
\[\frac{1 + 1}{0 + 1} = 0.\]
\[n = 1:\]
\[\frac{1 + 1^{2}}{1^{2} + 1} = 1.\]
\[n = 2:\]
\[\frac{2 + 2^{2}}{2^{2} + 1} = \frac{6}{5} \notin Z.\]
\[Ответ:\ - 1;\ \ 1;\ \ 0.\]