\[\boxed{\mathbf{238}.}\]
\[1)\ x;y \in N;\]
\[(7x + 9y)\ \vdots 11;\]
\[57x + 78y = 35x + 22x +\]
\[+ 45y + 33y = (35x + 45y) +\]
\[+ (22x + 33y) =\]
\[= 5 \cdot \underset{\vdots 11}{\overset{(7x + 9y)}{︸}} + \underset{\vdots 11}{\overset{11 \cdot (2x + 3y)}{︸}}\]
\[Получаем:\]
\[57x + 78y\ \vdots 11.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ m;n \in N;\]
\[(m + n)\ \vdots 7;\]
\[m + n = 7k;\ \ k \in N.\]
\[n = 7k - m.\]
\[Тогда:\]
\[2m^{2} + 5mn + 3n^{2} = 2m^{2} +\]
\[+ 5m(7k - m) +\]
\[+ 3 \cdot (7k - m)^{2} =\]
\[= 2m^{2} + 35mk - 5m^{2} +\]
\[+ 3 \cdot \left( 49k^{2} - 14mk + m^{2} \right) =\]
\[= - 3m^{2} + 35mk + 147k^{2} -\]
\[- 45mk + 3m^{2} =\]
\[= 147k^{2} - 7mk =\]
\[= 7 \cdot \left( 21k^{2} - mk \right)\ \vdots 7.\]
\[Получили:\]
\[2m^{2} + 5mn + 3n^{2}\ \vdots 7.\]
\[Что\ и\ требовалось\ доказать.\]