\[\boxed{\mathbf{235}.}\]
\[1)\ Пусть\ n = 2k;k \in Z.\]
\[n^{3} = (2k)^{3} = 8k^{3}\ \vdots 8.\]
\[2)\ Пусть\ n_{1} = 2k + 1;\ \ \]
\[n_{2} = 2m + 1;\ \ k;m \in Z.\]
\[n_{1}^{2} - n_{2}^{2} = (2k + 1)^{2} -\]
\[- (2m + 1)^{2} = 4k^{2} + 4k +\]
\[+ 1 - 4m^{2} - 4m - 1 =\]
\[= 4k^{2} - 4m^{2} + 4k - 4m =\]
\[= 4 \cdot \left( k^{2} - m^{2} \right) + 4 \cdot (k - m) =\]
\[= 4 \cdot (k - m)(k + m) +\]
\[+ 4 \cdot (k - m) =\]
\[= 4 \cdot (k - m)(k + m + 1).\]
\[Рассмотрим\ (k - m)\ и\]
\[\ (k + m + 1).\]
\[\textbf{а)}\ k\ и\ m - четные:\]
\[2k_{1} - 2m_{1} = 2 \cdot \left( k_{1} - m_{1} \right);\]
\[4 \cdot 2 \cdot \left( k_{1} - m_{1} \right)(k + m + 1)\ \vdots 8.\]
\[\textbf{б)}\ k - четное;m - нечетное:\]
\[2k_{1} + \left( 2m_{1} + 1 \right) + 1 =\]
\[= 2 \cdot \left( k_{1} + m_{1} + 1 \right);\]
\[4 \cdot 2 \cdot \left( k_{1} - m_{1} \right)(k + m + 1)\ \vdots 8.\]
\[\textbf{в)}\ аналогично\ б:k - нечетное;\]
\[m - четное.\]
\[\textbf{г)}\ k\ и\ m - нечетное:\]
\[2k_{1} + 1 - 2m_{1} - 1 =\]
\[= 2 \cdot \left( k_{1} - m_{1} \right);\]
\[4 \cdot 2 \cdot \left( k_{1} - m_{1} \right)(k + m + 1)\ \vdots 8.\ \]