\[\mathbf{Проверочная\ работа\ №2\ (стр.78)}\]
\[\boxed{\mathbf{1}.}\]
\[\left( \frac{1^{\backslash\text{√}a + \sqrt{b}}}{\sqrt{a} - \sqrt{b}} - \frac{1^{\backslash\sqrt{a} - \sqrt{b}}}{\sqrt{a} + \sqrt{b}} \right)\ :\frac{b\sqrt{b}}{a - b} =\]
\[= \frac{\sqrt{a} + \sqrt{b} - \sqrt{a} + \sqrt{b}}{\left( \sqrt{a} - \sqrt{b} \right)\left( \sqrt{a} + \sqrt{b} \right)} \cdot \frac{a - b}{b\sqrt{b}} =\]
\[= \frac{2\sqrt{b}}{a - b} \cdot \frac{a - b}{b\sqrt{b}} = \frac{2}{b}.\]
\[\boxed{\mathbf{2}.}\]
\[|2x - 3| = 5\]
\[1)\ 2x - 3 = 5\]
\[2x = 8\]
\[x = 4.\]
\[2)\ 2x - 3 = - 5\]
\[2x = - 2\]
\[x = - 1.\]
\[Ответ:x = - 1;\ \ x = 4.\]
\[\boxed{\mathbf{3}.}\]
\[\left\{ \begin{matrix} 2x^{2} + x - 6 \geq 0 \\ 3x + 1 < 0\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[2x^{2} + x - 6 = 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{- 1 + 7}{4} = \frac{6}{4} = 1,5;\ \ \ \]
\[x_{2} = \frac{- 1 - 7}{4} = - 2.\]
\[\left\{ \begin{matrix} 2 \cdot (x + 2)(x - 1,5) \geq 0 \\ x < - \frac{1}{3}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[Ответ:x \leq - 2.\]
\[\boxed{\mathbf{4}.}\]
\[a < 2:\]
\[\sqrt{a^{2} - 4a + 4} = \sqrt{(a - 2)^{2}} =\]
\[= |a - 2| = 2 - a.\]
\[\boxed{\mathbf{5}.}\]
\[y = \frac{1}{x + 1} - 2\]
\[\boxed{\mathbf{6}.}\]
\[a_{n} = 2n - 3;\]
\[a_{9} = 2 \cdot 9 - 3 = 15;\]
\[a_{17} = 2 \cdot 17 - 3 = 31.\]
\[S_{9 - 17} = \frac{15 + 31}{2} \cdot 9 =\]
\[= 23 \cdot 9 = 207.\]
\[Ответ:\ \ 207.\]
\[\boxed{\mathbf{7}.}\]
\[A = \left\{ 1;2;3;4 \right\};\ \ \]
\[B = \left\{ x:\ \ 3 < x < 5 \right\}:\]
\[A \cup B = \left\{ 1;2;3;4 \right\};\]
\[A \cap B = \left\{ 4 \right\}.\]
\[\boxed{\mathbf{8}.}\]
\[Контрпример:\]
\[\frac{6 + 3}{2} = \frac{9}{2} = 4,5.\]
\[\boxed{\mathbf{9}.}\]
\[(\forall x)p(x) - ложное;\]
\[(\exists x)p(x) - истинное.\ \]
\[\boxed{\mathbf{10}.}\]
\[Прямая\ теорема\ верна.\]
\[Обратная\ теорема:\]
\[если\ отрезок,\ соединяющий\]
\[\ стороны\ треугольника,\ \]
\[равен\ половине\]
\[третьей\ стороны,\ то\ он\ \]
\[проходит\ через\ середины\ \]
\[сторон\ (ложно).\]