\[\boxed{\mathbf{181}.}\]
\[1) - 16;\ - 4;\ - 1;\ldots\ \ \ \ n = 5\]
\[b_{1} = - 16;\ \ b_{2} = - 4;\]
\[q = \frac{b_{2}}{b_{1}} = \frac{1}{4}.\]
\[S_{5} = \frac{b_{1} \cdot \left( 1 - q^{5} \right)}{1 - q} =\]
\[= \frac{- 16 \cdot \left( 1 - \left( \frac{1}{4} \right)^{5} \right)}{1 - \frac{1}{4}} =\]
\[= \frac{- 16 \cdot \left( 1 - \frac{1}{1024} \right)}{\frac{3}{4}} =\]
\[= \frac{- 16 \cdot 4 \cdot \frac{1023}{1024}}{3} = \frac{- 64 \cdot 1023}{3 \cdot 1024} =\]
\[= - \frac{341}{16} = - 21\frac{5}{16}.\]
\[2)\ \frac{1}{16};\ - \frac{1}{8};\ \frac{1}{4};\ldots\ \ \ n = 6\]
\[b_{1} = \frac{1}{16};\ \ \ b_{2} = - \frac{1}{8};\]
\[q = - \frac{1}{8}\ :\frac{1}{16} = - \frac{16}{8} = - 2.\]
\[S_{6} = \frac{b_{1} \cdot \left( 1 - q^{6} \right)}{1 - q} =\]
\[= \frac{\frac{1}{16} \cdot \left( 1 - ( - 2)^{6} \right)}{1 + 2} = \frac{1 - 64}{16 \cdot 3} =\]
\[= - \frac{63}{48} = - \frac{21}{16} = - 1\frac{5}{16}.\]