\[\boxed{\mathbf{182}.}\]
\[1)\ a_{6} = 20;\ \ S_{6} = 102:\]
\[a_{6} = a_{1} + 5d = 20.\]
\[S_{6} = \frac{2a_{1} + 5d}{2} \cdot 6 =\]
\[= \left( 2a_{1} + 5d \right) \cdot 3\]
\[\left( 2a_{1} + 5d \right) \cdot 3 = 102\]
\[2a_{1} + 5d = 34\]
\[\left\{ \begin{matrix} a_{1} + 5d = 20\ \ \ \\ 2a_{1} + 5d = 34 \\ \end{matrix} \right.\ ( - )\]
\[- a_{1} = - 14\]
\[a_{1} = 14.\]
\[5d = 20 - a_{1} = 20 - 14 = 6\]
\[5d = 6\]
\[d = 1,2.\]
\[Ответ:a_{1} = 14;\ \ d = 1,2.\]
\[2)\ a_{7} = 9;\ \ S_{7} = 98:\]
\[a_{7} = a_{1} + 6d = 9.\]
\[S_{7} = \frac{2a_{1} + 6d}{2} \cdot 7 = 98\ \ \ | \cdot \frac{2}{7}\]
\[2a_{1} + 6d = 28.\]
\[\left\{ \begin{matrix} a_{1} + 6d = 9\ \ \ \ \\ 2a_{1} + 6d = 28 \\ \end{matrix} \right.\ \ ( - )\]
\[- a_{1} = - 19\]
\[a_{1} = 19.\]
\[6d = 9 - a_{1} = 9 - 19 = - 10\]
\[d = - \frac{10}{6} = - \frac{5}{3} = - 1\frac{2}{3}.\]
\[Ответ:a_{1} = 19;d = - 1\frac{2}{3}.\]