\[\boxed{\mathbf{136}.}\]
\[1)\ y = 2x^{2} + 5x + 3\]
\[y = 0:\]
\[2x^{2} + 5x + 3 = 0\]
\[D = 25 - 24 = 1\]
\[x_{1} = \frac{- 5 - 1}{4} = - \frac{6}{4} = - 1,5;\]
\[x_{2} = \frac{- 5 + 1}{4} = - 1.\]
\[x = 0:\]
\[y = 3.\]
\[Ответ:( - 1,5;0);( - 1;0);(0;3).\]
\[2)\ y = - 3x^{2} - x + 10\]
\[y = 0:\]
\[- 3x^{2} - x + 10 = 0\]
\[3x^{2} + x - 10 = 0\]
\[D = 1 + 120 = 121\]
\[x_{1} = \frac{- 1 + 11}{6} = \frac{10}{6} = \frac{5}{3} = 1\frac{2}{3};\]
\[x_{2} = \frac{- 1 - 11}{6} = - \frac{12}{6} = - 2.\]
\[x = 0:\]
\[y = 10.\]
\[Ответ:\left( 1\frac{2}{3};0 \right);( - 2;0);(0;10).\]