\[\boxed{\mathbf{137}.}\]
\[Координаты\ вершины\ \]
\[параболы\ \left( x_{0};y_{0} \right).\]
\[x_{0} = - \frac{b}{2a}.\]
\[1)\ y = (x - 1)^{2} + 5 = x^{2} -\]
\[- 2x + 1 + 5 = x^{2} - 2x + 6\]
\[x_{0} = \frac{2}{2} = 1;\]
\[y_{0} = 5.\]
\[Ответ:(1;5).\]
\[2)\ y = - (x + 2)^{2} - 3\]
\[x_{0} = - 2;\]
\[y_{0} = - 3.\]
\[Ответ:( - 2;\ - 3).\]
\[3)\ y = - (x + 3)²\]
\[x_{0} = - 3;\]
\[y_{0} = 0.\]
\[Ответ:( - 3;0).\]
\[4)\ y = x^{2} - 7\]
\[x_{0} = 0;\ \ y_{0} = - 7.\]
\[Ответ:(0;\ - 7).\]
\[5)\ y = 2x^{2} - 4x + 1\]
\[x_{0} = \frac{4}{4} = 1;\]
\[y_{0} = 2 - 4 + 1 = - 1.\]
\[Ответ:(1;\ - 1).\]
\[6)\ y = 3x^{2} + 6x - 7\]
\[x_{0} = - \frac{6}{6} = - 1;\]
\[y_{0} = 3 - 6 - 7 = - 10.\]
\[Ответ:( - 1;\ - 10).\]
\[7)\ y = - 4x^{2} + 16x - 2\]
\[x_{0} = \frac{16}{8} = 2;\]
\[y_{0} = - 16 + 32 - 2 = 14.\]
\[Ответ:(2;\ 14).\]
\[8)\ y = - 5x^{2} - 20x - 13\]
\[x_{0} = - \frac{20}{10} = - 2;\]
\[y_{0} = - 20 + 40 - 13 = 7.\]
\[Ответ:( - 2;7).\]