\[\boxed{\mathbf{135}.}\]
\[1)\ y = x^{2} - 4x + 3\]
\[x^{2} - 4x + 3 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = 2 + 1 = 3;\ \ x_{2} = 2 - 1 = 1.\]
\[Ответ:x = 3;x = 1.\]
\[2)\ y = x^{2} + x - 6\]
\[x^{2} + x - 6 = 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = - 3;\ \ x_{2} = 2.\]
\[Ответ:x = - 3;x = 2.\]
\[3)\ y = 3x^{2} + 5x - 2\]
\[3x^{2} + 5x - 2 = 0\]
\[D = 25 + 24 = 49\]
\[x_{1} = \frac{- 5 + 7}{6} = \frac{2}{6} = \frac{1}{3};\ \ \]
\[x_{2} = \frac{- 5 - 7}{6} = - 2.\]
\[Ответ:x = - 2;\ \ x = \frac{1}{3}.\]
\[4)\ y = - 3x^{2} + 7x - 2\]
\[- 3x^{2} + 7x - 2 = 0\]
\[3x^{2} - 7x + 2 = 0\]
\[D = 49 - 24 = 25\]
\[x_{1} = \frac{7 + 5}{6} = 2;\ \ \ \]
\[x_{2} = \frac{7 - 5}{6} = \frac{1}{3}.\]
\[Ответ:x = \frac{1}{3};\ \ x = 2.\]