\[\boxed{\mathbf{1269}\mathbf{.}}\]
\[\sin x\sin{2x} < \sin{3x}\sin{4x};\ \ \ \]
\[\left( 0;\frac{\pi}{2} \right).\]
\[f(x) = \sin x\sin{2x} -\]
\[- \sin{3x}\sin{4x} < 0\]
\[\frac{1}{2}\left( \cos x - \cos{3x} \right) =\]
\[= \frac{1}{2}\left( \cos x - \cos{7x} \right)\]
\[\cos{3x} - \cos{7x} = 0\]
\[\sin{5x}\sin{2x} = 0\]
\[\sin{5x} = 0\]
\[5x = \text{πn}\]
\[x = \frac{\text{πn}}{5}.\]
\[\sin{2x} = 0\]
\[2x = \text{πk}\]
\[x = \frac{\text{πk}}{2}.\]
\[0 < x < \frac{\pi}{5};\ \ \ \ \frac{2\pi}{5} < \pi < \frac{\pi}{2}.\]