\[\boxed{\mathbf{1268}\mathbf{.}}\]
\[\cos x - \sin x - \cos{2x} > 0;\]
\[\text{\ \ \ \ }(0;2\pi)\text{.\ \ }\]
\[f(x) = \cos x - \sin x -\]
\[- \cos{2x} > 0\]
\[\cos x - \sin x -\]
\[- \left( \cos^{2}x - \sin^{2}x \right) = 0\]
\[\left( \cos x - \sin x \right) -\]
\[- \left( \cos x - \sin x \right)\left( \cos x + \sin x \right) =\]
\[= 0\]
\[(\cos x - \sin x\left( 1 - \cos x - \sin x \right) = 0\]
\[1)\ \cos x - \sin x = 0\]
\[1 - tg\ x = 0\]
\[tg\ x = 1\]
\[x = \frac{\pi}{4} + \pi n.\]
\[2)\ 1 - \sqrt{2}\sin\left( x + \frac{\pi}{4} \right) = 0\]
\[\sin\left( x + \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}\]
\[x + \frac{\pi}{4} = ( - 1)^{n} \cdot \frac{\pi}{4} + \pi n\]
\[x = - \frac{\pi}{4} + ( - 1)^{n} \cdot \frac{\pi}{4} + \pi n.\]
\[\frac{\pi}{4} < x < \frac{\pi}{2};\ \ \ \frac{5\pi}{4} < x < 2\pi.\]