\[\boxed{\mathbf{1270}\mathbf{.}}\]
\[4\sin^{2}x + 2 \cdot (a - 3)\cos x +\]
\[+ 3a - 4 = 0\]
\[- 4\cos^{2}x + 2(a - 3)\cos x +\]
\[+ 3a = 0\]
\[Пусть\cos x = y:\]
\[- 4y^{2} + 2(a - 3)y + 3a = 0\]
\[4y^{2} - 2(a - 3)y - 3a = 0\]
\[D = 4 \cdot (a - 3)^{2} + 4 \cdot 4 \cdot 3a =\]
\[= 4a^{2} - 24a + 36 + 48a =\]
\[= 4a^{2} + 24a + 36 =\]
\[= 4 \cdot \left( a^{2} + 6a + 9 \right) =\]
\[= 4 \cdot (a + 3)^{2}\]
\[y_{1} = \frac{2 \cdot (a - 3) + 2(a + 3)}{8} =\]
\[= \frac{2a - 6 + 2a + 6}{8} = \frac{4a}{8} = \frac{a}{2};\]
\[y_{2} = \frac{2 \cdot (a - 3) - 2 \cdot (a + 3)}{8} =\]
\[= \frac{2a - 6 - 2a - 6}{8} =\]
\[= - \frac{12}{8} = - \frac{3}{2}.\]
\[\cos x = \frac{a}{2}.\]
\[Чтобы\ уравнение\ имело\ \]
\[решение:\]
\[\left| \frac{a}{2} \right| \leq 1\]
\[|a| \leq 2.\]
\[x = \pm \arccos\frac{a}{2} + 2\text{πn.}\]