\[\boxed{\mathbf{1201}\mathbf{.}}\]
\[1)\ a\sin x + (1 + a)\cos x = \sqrt{5}\]
\[R = \sqrt{a^{2} + (1 + a)^{2}} =\]
\[= \sqrt{2a^{2} + 2a + 1}\]
\[R\left( \frac{a}{R}\sin x + \frac{1 + a}{R}\cos x \right) = \sqrt{5}\]
\[\cos 4 = \frac{a}{R};\ \ \sin 4 = \frac{1 + a}{R};\]
\[R \cdot \sin(x + 4) = \sqrt{5}.\]
\[Это\ уравнение\ имеет\ корни,\ \]
\[если\ \ - 1 \leq \frac{\sqrt{5}}{R} \leq 1;\ \ \]
\[так\ как\ R > 0 \rightarrow R \geq \sqrt{5}.\]
\[\sqrt{2a^{2} + 2a + 1} \geq \sqrt{5}\]
\[2a^{2} + 2a + 1 \geq 5\]
\[2a^{2} + 2a - 4 \geq 0\]
\[a^{2} + a - 2 \geq 0\]
\[D = 1 + 8 = 9\]
\[a_{1} = \frac{- 1 - 3}{2} = - 2;\ \ \]
\[a_{2} = \frac{- 1 + 3}{2} = 1.\]
\[(a + 2)(a - 1) \geq 0\]
\[a \leq - 2;\ \ a \geq 1.\]
\[Ответ:при\ a \leq - 2;\ \ a \geq 1.\]
\[2)\ a\cos x + (1 - a)\sin x = \sqrt{5}\]
\[R = \sqrt{a^{2} + (1 - a)^{2}} =\]
\[= \sqrt{2a^{2} - 2a + 1}\]
\[R\left( \frac{a}{R}\sin x + \frac{1 - a}{R}\sin x \right) = \sqrt{5}\]
\[\cos 4 = \frac{a}{R};\ \sin 4 = \frac{1 - a}{R}\]
\[R\sin{(x + 4)} = \sqrt{5}\]
\[Это\ уравнение\ имеет\ корни,\ \]
\[если\ \ - 1 \leq \frac{\sqrt{5}}{R} \leq 1;\ \ \]
\[так\ как\ R > 0 \rightarrow R \geq \sqrt{5}.\]
\[\sqrt{2a^{2} - 2a + 1} \geq \sqrt{5}\ \]
\[2a^{2} - 2a + 1 \geq 5\]
\[2a^{2} - 2a - 4 \geq 0\]
\[a^{2} - a - 2 \geq 0\]
\[D = 1 + 8 = 9\]
\[a_{1} = \frac{1 + 3}{2} = 2;\ \]
\[\ a_{2} = \frac{1 - 3}{2} = - 1\]
\[(a + 1)(a - 2) \geq 0\]
\[a \leq - 1;\ \ a \geq 2\]
\[Ответ:при\ a \leq - 1;\ \ a \geq 2.\]