\[\boxed{\mathbf{1200}\mathbf{.}}\]
\[1)\sin^{3}x + \sin^{2}x\cos x =\]
\[= 2\cos^{3}x\ \]
\[\frac{\sin^{3}x}{\cos^{3}x} + \frac{\sin^{2}x\cos x}{\cos^{3}x} -\]
\[- \frac{2\cos^{3}x}{\cos^{3}x} = 0\]
\[tg^{3}\ x + tg^{2}x - 2 = 0\]
\[Пусть\ tg\ x = y:\]
\[y^{3} + y - 2 = 0\]
\[P(1) = 0;\ \ y = 1 - корень.\]
\[(y - 1)\left( y^{2} + y + 2 \right) = 0\]
\[y = 1;\ \ \ \ \]
\[y^{2} + y + 2 = 0\]
\[D = 1 - 8 =\]
\[= - 7 < 0\ (нет\ корней).\]
\[tg\ x = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Ответ:\ \frac{\pi}{4} + \pi k.\]
\[2)\sin^{3}x - \sin^{2}x\cos x +\]
\[+ 2\cos^{3}x = 0\ \]
\[\frac{\sin^{3}x}{\cos^{3}x} - \frac{\sin^{2}x\cos x}{\cos^{3}x} +\]
\[+ \frac{2\cos^{3}x}{\cos^{3}x} = 0\]
\[tg^{3}\ x - tg^{2}x + 2 = 0\]
\[Пусть\ tg\ x = y:\]
\[y^{3} - y + 2 = 0\]
\[P( - 1) = 0;\ \ y = - 1 - корень.\]
\[y^{3} - y + 2 =\]
\[= (y + 1)\left( y^{2} - y \right) + 2\]
\[y = - 1.\]
\[tg\ x = - 1\]
\[x = - \frac{\pi}{4} + \pi k.\]
\[Ответ:\ \ - \frac{\pi}{4} + \pi k.\]