\[\boxed{\mathbf{1109}\mathbf{.}}\]
\[1)\ 2\cos^{2}\left( a - \frac{\pi}{4} \right) =\]
\[= \cos\left( 2a - \frac{\pi}{2} \right) + \cos 0 =\]
\[= \sin{2a} + 1\]
\[2)\ 4\cos x \cdot \sin^{2}\frac{x}{2} =\]
\[= 2\sin\frac{x}{2}\left( \sin\frac{3x}{2} - \sin\frac{x}{2} \right) =\]
\[= 2\sin\frac{x}{2}\sin\frac{3x}{2} - 2\sin^{2}\frac{x}{2} =\]
\[= \cos x - \cos{2x} + \cos x - 1 =\]
\[= 2\cos x - \cos{2x} - 1\ \]
\[3)\sin^{3}a = \sin a \cdot \frac{1 - \cos{2a}}{2} =\]
\[= \frac{1}{2}\sin a - \frac{1}{2}\sin a\cos{2a} =\]
\[= \frac{1}{2}\sin a - \frac{1}{4}\left( \sin{3a} - \sin a \right) =\]
\[= \frac{1}{2}\sin a - \frac{1}{4}\sin{3a} + \frac{1}{4}\sin a =\]
\[= \frac{3}{4}\sin a - \frac{1}{4}\sin{3a}\]
\[4)\ 4\cos^{4}a = 4 \cdot \left( \frac{1 + \cos{2a}}{2} \right)^{2} =\]
\[= \text{co}s^{2}2a + 2\cos{2a} + 1 =\]
\[= \frac{1}{2} + \frac{1}{2}\cos^{4}a + \cos{2a} + 1 =\]
\[= \frac{1}{4}\cos^{4}a + \cos{2a} + \frac{3}{2}\]