\[\boxed{\mathbf{1107}\mathbf{.}}\]
\[Выведем\ формулу:\]
\[\sin a + \sin b + \sin y = \sin a +\]
\[+ \sin b + \sin y - \sin\pi =\]
\[= \sin a + \sin b + \sin y -\]
\[- \sin(a + b + y) =\]
\[= 2\sin\frac{a + b}{2} \bullet \cos\frac{a - b}{2} -\]
\[- 2\sin\frac{a + b}{2} \bullet \cos\left( y + \frac{a + b}{2} \right) =\]
\[= 2\sin\frac{a + b}{2} \bullet\]
\[\bullet \left( \cos\frac{a - b}{2} - \cos\left( y + \frac{a + b}{2} \right) \right) =\]
\[= 4\sin\frac{a + b}{2} \bullet \sin\frac{a + y}{2} \bullet\]
\[\bullet \sin\frac{b + y}{2} =\]
\[= 4\sin\left( \frac{\pi}{2} - \frac{y}{2} \right) \bullet \sin\left( \frac{\pi}{2} - \frac{b}{2} \right) \bullet\]
\[\bullet \sin\left( \frac{\pi}{2} - \frac{a}{2} \right) = 4\cos\frac{y}{2} \bullet\]
\[\bullet \cos\frac{b}{2} \bullet \cos\frac{a}{2}.\]
\[Произведение\ косинусов:\]
\[\cos a \bullet \cos b \bullet \cos y = \frac{1}{4}\sin{2a} +\]
\[+ \frac{1}{4}\sin{2b} + \frac{1}{4}\sin{2y}.\]
\[Произведение\ синусов:\]
\[\sin a \bullet \sin b \bullet \sin y =\]
\[= \cos\left( \frac{\pi}{2} - a \right) \bullet \cos\left( \frac{\pi}{2} - b \right) \bullet\]
\[\bullet \cos\left( \frac{\pi}{2} - y \right) =\]
\[= \frac{1}{4}\sin(\pi - 2a) +\]
\[+ \frac{1}{4}\sin(\pi - 2b) +\]
\[+ \frac{1}{4}\sin(\pi - 2y) =\]
\[= - \frac{1}{4}\sin{2a} - \frac{1}{4}\sin{2b} -\]
\[- \frac{1}{4}\sin{2y}.\]
\[1)\sin^{2}a\sin{2a} + \sin^{2}b\sin{2b} +\]
\[+ \sin^{2}y\sin{2y} -\]
\[- \sin{2a}\sin{2b}\sin{2y} =\]
\[= 2\sin a\sin b\sin y\]