\[\boxed{\mathbf{1000.}}\]
\[\sin a + \cos a = p\]
\[p^{2} = \left( \sin a + \cos a \right)^{2} = \sin^{2}a +\]
\[+ 2\sin a \cdot \cos a + \cos^{2}a =\]
\[= 1 + 2\sin a \cdot \cos a;\]
\[\sin a \cdot \cos a = \frac{1}{2}\left( p^{2} - 1 \right)\]
\[1)\sin a - \cos a\]
\[\left( \sin a - \cos a \right)^{2} = \sin^{2}a -\]
\[- 2\sin a\cos a + \cos^{2}a =\]
\[= 1 - \left( p^{2} - 1 \right) = 2 - p^{2}.\]
\[\sin a - \cos a = \pm \sqrt{2 - p^{2}}.\]
\[2)\ \left( \sin a + \cos a \right)^{2} = p^{2}\]
\[\sin a + \cos a + 2\sin a\cos a = p^{2}\]
\[1 + \sin{2a} = p^{2}\]
\[\sin{2a} = p^{2} - 1\]
\[\sin^{4}a + \cos^{4}a =\]
\[= \left( \sin a + \cos a \right)^{2} -\]
\[- 2 \cdot \sin^{2}a\cos^{2}a =\]
\[= 1 - \frac{1}{2}\sin^{2}{2a} =\]
\[= 1 - \frac{1}{2}\left( p^{2} - 1 \right)^{2} = 1 -\]
\[- \frac{1}{2} \cdot \left( p^{4} - 2p^{2} + 1 \right) =\]
\[= 1 - \frac{1}{2}p^{4} + p^{2} - \frac{1}{2} = \ \]
\[= - \frac{1}{2}p^{4} + p^{2} + \frac{1}{2}\text{.\ }\]