\[\boxed{\mathbf{1001.}}\]
\[tg\ a + ctg\ a = m\]
\[1)\ tg^{2}a + ctg^{2}a = m^{2} - 2\]
\[(tg\ a + ctg\ a)^{2} = m^{2}\]
\[tg^{2}a + 2tg\ a\ ctg\ a +\]
\[+ ctg^{2}a = m^{2}\]
\[tg^{2}\ a + 2 \cdot 1 + ctg^{2}a = m^{2}\]
\[tg^{2}a + ctg^{2}a = m^{2} - 2.\]
\[2)\ tg\ a - ctg\ a = \pm \sqrt{m^{2} - 4}\]
\[(tg\ a - ctg\ a)^{2} = tg^{2}a -\]
\[- 2tg\ a\ ctg\ a + ctg^{2}a =\]
\[= tg^{2}a + ctg^{2}a - 2 =\]
\[= m^{2} - 4.\]
\[3)\ tg^{3}a + ctg^{3}a = m^{3} - 3m\ \]
\[(tg\ a + ctg\ a)^{3} = m^{3}\]
\[tg^{3}a + ctg^{3}a + 3tg^{2}a\ ctg\ a +\]
\[+ 3ctg^{2}a\ tga = m^{3}\]
\[tg^{3}a + ctg^{3}a +\]
\[+ 3(tg\ a + ctg\ a) = m^{3}\]
\[tg^{3}a + ctg^{3}a = m^{3} - 3m.\]