\[\boxed{\mathbf{999.}}\]
\[1)\frac{1}{\cos^{2}a} - tg^{2}a - \sin^{2}a =\]
\[= 1 + tg^{2}a - tg^{2}a - \sin^{2}a =\]
\[= 1 - \sin^{2}a = \cos^{2}a\]
\[2)\cos^{2}a + ctg^{2}a - \frac{1}{\sin^{2}a} =\]
\[= \cos^{2}a + ctg^{2}a - 1 - ctg^{2}a =\]
\[= \cos^{2}a - 1 = - \sin^{2}a\]
\[3)\ \frac{1}{\cos^{2}a} - tg^{2}a\left( \cos^{2}a + 1 \right) =\]
\[= 1 + tg^{2}a - tg^{2}a \cdot \cos^{2}a -\]
\[- tg^{2}a =\]
\[1 - \frac{\sin^{2}a}{\cos^{2}a} \cdot \cos^{2}a = 1 -\]
\[- \sin^{2}a = \cos^{2}a\]
\[4)\ \frac{\cos a}{1 + \sin a} + \frac{\cos a}{1 - \sin a} =\]