\[\mathbf{Проверочная\ работа\ №1\ (стр.78)}\]
\[\boxed{\mathbf{1}.}\]
\[\frac{\left( a^{3} \right)^{5} \cdot a^{0} \cdot a^{2}}{a^{- 2}} =\]
\[= a^{15} \cdot 1 \cdot a^{2} \cdot a^{2} = a^{19}.\]
\[\boxed{\mathbf{2}.}\]
\[0,00038 = 3,8 \cdot 10^{- 4}.\]
\[\boxed{\mathbf{3}.}\]
\[\left\{ \begin{matrix} 2x - 3y = 7\ \ | \cdot 4 \\ 3x + 4y = 2\ \ | \cdot 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 8x - 12y = 28 \\ 9x + 12y = 6\ \ \ \\ \end{matrix} \right.\ ( + )\]
\[17x = 34\]
\[x = 2.\]
\[2x - 3y = 7\]
\[3y = 2x - 7\]
\[3y = 2 \cdot 2 - 7 = - 3\]
\[y = - 1.\]
\[\left\{ \begin{matrix} x = 2\ \ \ \\ y = - 1 \\ \end{matrix} \right.\ \]
\[Ответ:(2; - 1).\]
\[\boxed{\mathbf{4}.}\]
\[\left\{ \begin{matrix} 5x + 3 > 0 \\ \frac{1}{2}x - 4 < 0 \\ \end{matrix} \right.\ \text{\ \ \ \ }\left\{ \begin{matrix} 5x > - 3 \\ \frac{1}{2}x < 4\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x > - 0,6 \\ x < 8\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:\ - 0,6 < x < 8.\]
\[\boxed{\mathbf{5}.}\]
\[x < 0;\ \ y < 0:\]
\[\sqrt{9x^{3}y^{5}} = - 3xy^{2}\sqrt{\text{xy}}.\]
\[\boxed{\mathbf{6}.}\]
\[5x + 3 - 2x^{2} = 0\]
\[2x^{2} - 5x - 3 = 0\]
\[D = 25 + 24 = 49\]
\[x_{1} = \frac{5 + 7}{4} = 3;\ \]
\[\ x_{2} = \frac{5 - 7}{4} = - 0,5.\]
\[Ответ:x = - 0,5;\ \ x = 3.\]
\[\boxed{\mathbf{7}.}\]
\[y = x^{2} - 5x + 6\]
\[\boxed{\mathbf{8}.}\]
\[a_{n + 1} = - a_{n}^{2} + 1;\ \ \ a_{1} = 2:\]
\[a_{2} = - 2^{2} + 1 = - 3;\]
\[a_{3} = - ( - 3)^{2} + 1 = - 8;\]
\[a_{4} = - ( - 8)^{2} + 1 = - 63;\]
\[a_{5} = - ( - 63)^{2} + 1 = - 3968.\]
\[\boxed{\mathbf{9}.}\]
\[Упорядочим\ ряд\ данных:\]
\[3,\ 4,\ 5,\ 5,\ 7,\ 8.\]
\[Мода = 5.\]
\[Медиана = \frac{5 + 5}{2} = 5.\]
\[Среднее\ значение:\]
\[\frac{3 + 4 + 5 \cdot 2 + 7 + 8}{6} = \frac{32}{6} = 5\frac{1}{3}.\]