Вопрос:

Задание 12: Дана треугольная пирамида SABC с вершиной S, в основании которой лежит правильный треугольник ABC. Отрезки AM, BN и CP являются медианами, точка O - точка пересечения медиан. Отрезок SO перпендикулярен плоскости основания. Выберите из предложенного списка пары перпендикулярных прямых: 1) прямые SA и BC 2) прямые SM и NP 3) прямые SN и NP 4) прямые SA и CP 5) прямые SB и NP В ответе запишите номера выбранных пар прямых без пробелов, запятых и других дополнительных символов.

Ответ:

В правильном треугольнике ABC медианы AM, BN и CP также являются высотами. Так как SO перпендикулярен плоскости основания (ABC), то он перпендикулярен любой прямой в этой плоскости. Рассмотрим варианты: 1. Прямые SA и BC: Так как SO перпендикулярен плоскости ABC, а BC лежит в этой плоскости, то SO перпендикулярен BC. Однако, это не означает, что SA перпендикулярна BC. Этот вариант не подходит. 2. Прямые SM и NP: Нет информации о перпендикулярности этих прямых. 3. Прямые SN и NP: Нет информации о перпендикулярности этих прямых. 4. Прямые SA и CP: Так как SO перпендикулярен плоскости ABC, а CP лежит в этой плоскости, то SO перпендикулярен CP. Однако, это не означает, что SA перпендикулярна CP. Этот вариант не подходит. 5. Прямые SB и NP: Нет информации о перпендикулярности этих прямых. Но так как треугольник ABC правильный, то медианы являются и высотами. Значит AM перпендикулярна BC, BN перпендикулярна AC и CP перпендикулярна AB. По условию SO перпендикулярна плоскости ABC, значит SO перпендикулярна любой прямой в этой плоскости. Из условия задачи, только вариант 1 (прямые SA и BC) может быть перпендикулярным. Если SA перпендикулярен BC, то угол между ними 90 градусов. Также можно рассмотреть вариант, что SN перпендикулярен NP, так как N и P лежат на сторонах треугольника, и в определенных случаях это может быть верно. Но, скорее всего, это не тот ответ, который ожидается. Если SA перпендикулярна BC, то проекция SA на плоскость ABC также должна быть перпендикулярна BC. Проекция SA - это AO, и так как медианы пересекаются под углом 90 градусов в правильном треугольнике, то AO перпендикулярен BC. Ответ: 1
Смотреть решения всех заданий с фото

Похожие