Задача 1:
а) Для прямоугольного треугольника со сторонами a=3, b=4, c=5, где c - гипотенуза, радиус вписанной окружности (r) можно найти по формуле:
$r = \frac{a + b - c}{2}$
Подставляем значения:
$r = \frac{3 + 4 - 5}{2} = \frac{2}{2} = 1$
Радиус описанной окружности (R) для прямоугольного треугольника равен половине гипотенузы:
$R = \frac{c}{2}$
Подставляем значение:
$R = \frac{5}{2} = 2.5$
б) Для прямоугольного треугольника со сторонами a=12, b=5, c=13, где c - гипотенуза, радиус вписанной окружности (r) можно найти по формуле:
$r = \frac{a + b - c}{2}$
Подставляем значения:
$r = \frac{12 + 5 - 13}{2} = \frac{4}{2} = 2$
Радиус описанной окружности (R) для прямоугольного треугольника равен половине гипотенузы:
$R = \frac{c}{2}$
Подставляем значение:
$R = \frac{13}{2} = 6.5$
Ответ:
а) r=1, R=2.5
б) r=2, R=6.5
Убрать каракули