\[\left( \frac{{\sqrt{n}}^{\backslash\text{√}n}}{\sqrt{m} + \sqrt{n}} - \frac{\sqrt{n} - {\sqrt{m}}^{\backslash\sqrt{m} + \sqrt{n}}}{\sqrt{n}} \right)\ :\frac{\sqrt{m}}{\sqrt{n}} =\]
\[= \frac{n - n + m}{\sqrt{n}\left( \sqrt{m} + \sqrt{n} \right)} \cdot \frac{\sqrt{n}}{\sqrt{m}} =\]
\[= \frac{m}{\sqrt{m}\left( \sqrt{m} + \sqrt{n} \right)} = \frac{\sqrt{m}}{\sqrt{m} + \sqrt{n}}.\]