Для начала, нам нужно понять, сколько времени заняла работа на новом комбайне по отношению ко времени на старом комбайне. Если на новом комбайне затратили на $\frac{3}{10}$ меньше времени, это означает, что время работы на новом комбайне составляет $1 - \frac{3}{10} = \frac{7}{10}$ от времени работы на старом комбайне.
Пусть $x$ - время работы на старом комбайне. Тогда время работы на новом комбайне составляет $\frac{7}{10}x$, и мы знаем, что это равно 56 часам. Получаем уравнение:
$\frac{7}{10}x = 56$
Чтобы найти $x$, умножим обе части уравнения на $\frac{10}{7}$:
$x = 56 \cdot \frac{10}{7} = \frac{560}{7} = 80$
Таким образом, время работы на старом комбайне составило 80 часов.
Убрать каракули