\[\left\{ \begin{matrix} b_{2} + b_{5} = 36 \\ b_{3} \cdot b_{4} = 243 \\ \end{matrix} \right.\ \]
\[b_{3} \cdot b_{4} = b_{1} \cdot q^{2} \cdot b_{1} \cdot q^{3} =\]
\[= \left( b_{1} \cdot q \right)\left( b_{1} \cdot q^{4} \right) = b_{2} \cdot b_{5}\]
\[\left\{ \begin{matrix} b_{2} + b_{5} = 36 \\ b_{2} \cdot b_{5} = 243 \\ \end{matrix} \right.\ \]
\[b_{2} = 9;\ \ \ b_{5} = 27\ \ \ или\ \ \ b_{2} = 27;\ \ \ \]
\[b_{5} = 9\]
\[Прогрессия\ возрастает \Longrightarrow\]
\[\Longrightarrow b_{2} = 9;\ \ b_{5} = 27\]
\[b_{5}\ :b_{2} = 27\ :9 = 3\]
\[b_{5}\ :b_{2} = q^{3} \Longrightarrow q^{3} = 3 \Longrightarrow\]
\[\Longrightarrow q = \sqrt[3]{3}\]
\[b_{1} = b_{2}\ :q = 9\ :\sqrt[3]{3} = \frac{9}{\sqrt[3]{3}} =\]
\[= \sqrt[3]{243} = 3\sqrt[3]{9}\]
\[Ответ:\ 3\sqrt[3]{9}.\]