\[x + 5;\ \ \sqrt{6x};\ \ x - 2\]
\[\frac{\sqrt{6x}}{x + 5} = \frac{x - 2}{\sqrt{6x}}\]
\[\frac{(x - 2)(x + 5) - 6x}{\sqrt{6x}(x + 5)} = 0\ \ \ \ \ \ \]
\[x > 0;\ \ x
eq - 5\]
\[(x - 2)(x + 5) - 6x = 0\]
\[x^{2} + 5x - 2x - 10 - 6x = 0\]
\[x^{2} - 3x - 10 = 0\]
\[x_{1} = - 2\ (не\ подходит);\ \ x_{2} = 5.\]
\[Ответ:5.\]