\[\left\{ \begin{matrix} b_{2} + b_{5} = 84 \\ b_{3} \cdot b_{4} = 243 \\ \end{matrix} \right.\ \]
\[b_{3} \cdot b_{4} = b_{1} \cdot q^{2} \cdot b_{1} \cdot q^{3} =\]
\[= \left( b_{1} \cdot q \right) \cdot \left( b_{1} \cdot q^{4} \right) = b_{2} \cdot b_{5}\]
\[\left\{ \begin{matrix} b_{2} + b_{5} = 84 \\ b_{2} \cdot b_{5} = 243 \\ \end{matrix} \right.\ \]
\[b_{2} = 3;\ \ b_{5} = 81\ \ \ \ или\ \ b_{2} = 81;\ \ \]
\[b_{5} = 3\]
\[Прогрессия\ убывающая \Longrightarrow\]
\[\Longrightarrow b_{2} = 81;\ \ b_{5} = 3.\]
\[b_{5}\ :b_{2} = 3\ :81 = \frac{1}{27}\]
\[b_{5}\ :b_{2} = q^{3} \Longrightarrow q^{3} = \frac{1}{27} \Longrightarrow\]
\[\Longrightarrow q = \frac{1}{3}\]
\[b_{1} = b_{2}\ :q = 81\ :\frac{1}{3} = 243.\]
\[Ответ:\ \ 243.\]