\[x - 2;\ \ \sqrt{8x};\ \ \ x + 12\]
\[\frac{\sqrt{8x}}{x - 2} = \frac{x + 12}{\sqrt{8x}}\]
\[\frac{(x + 12)(x - 2) - 8x}{\sqrt{8x}(x - 2)} = 0\ \ \ \ \ \ \ \ \]
\[x > 0;\ \ \ x
eq 2\]
\[(x + 12)(x - 2) - 8x = 0\]
\[x^{2} - 2x + 12x - 24 - 8x = 0\]
\[x^{2} + 2x - 24 = 0\]
\[x_{1} = - 6\ (не\ подходит);\ \ \ \]
\[x_{2} = 4.\]
\[Ответ:4.\ \]