\[\left\{ \begin{matrix} a_{3} + a_{5} = 16 \\ a_{2} \cdot a_{6} = 28\ \\ \end{matrix} \right.\ \]
\[a_{3} + a_{5} = a_{1} + 2d + a_{1} + 4d =\]
\[= \left( a_{1} + d \right) + \left( a_{1} + 5d \right) =\]
\[= a_{2} + a_{6}\]
\[\left\{ \begin{matrix} a_{2} + a_{6} = 16 \\ a_{2} \cdot a_{6} = 28 \\ \end{matrix} \right.\ \]
\[a_{2} = 2;\ \ a_{6} = 14\ \ \ или\ \ \ a_{2} = 14;\ \ \]
\[a_{6} = 2\]
\[Прогрессия\ возрастающая \Longrightarrow\]
\[\Longrightarrow a_{2} = 2;\ \ a_{6} = 14\]
\[d = \frac{a_{6} - a_{2}}{6 - 2} = \frac{14 - 2}{4} = \frac{12}{4} = 3\]
\[a_{1} = a_{2} - d = 2 - 3 = - 1\]
\[Ответ:\ - 1.\ \]