\[\frac{x^{\backslash x + 2}}{x - 2} - \frac{7^{\backslash x - 2}}{x + 2} = \frac{8}{x^{2} - 4}\]
\[ОДЗ:x \neq \pm 2.\]
\[x^{2} + 2x - 7x + 14 = 8\]
\[x^{2} - 5x + 6 = 0\]
\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 6\]
\[x_{1} = 2;\ \ x_{2} = 3.\]
\[Ответ:x = 2;x = 3.\]