\[x³ + 3x² + x - 2 = 0\]
\[P( - 2) =\]
\[= ( - 2)^{3} + 3 \bullet ( - 2)^{2} + ( - 2) - 2 =\]
\[= - 8 + 12 - 2 - 2 = 0.\]
\[(x + 2)\left( x^{2} + x - 1 \right) = 0\]
\[x + 2 = 0\]
\[x = - 2.\]
\[x^{2} + x - 1 = 0\]
\[D = 1^{2} - 4 \bullet 1 \bullet ( - 1) = 1 + 4 =\]
\[= 5\]
\[x_{1} = \frac{- 1 + \sqrt{5}}{2};\ \ \ \ x_{2} = \frac{- 1 - \sqrt{5}}{2}\]
\[Ответ:\ - 2;\ \ \frac{- 1 + \sqrt{5}}{2};\ \]
\[\ \frac{- 1 - \sqrt{5}}{2}.\]