\[\left( x^{2} - 5x \right)^{2} + 10x^{2} - 50x + 24 =\]
\[= 0\]
\[\left( x^{2} - 5x \right)^{2} + 10 \cdot \left( x^{2} - 5x \right) + 24 = 0\]
\[t = x^{2} - 5x\]
\[t^{2} + 10t + 24 = 0\]
\[D = 10^{2} - 4 \cdot 1 \cdot 24 =\]
\[= 100 - 96 = 4;\ \ \ \sqrt{D} = 2.\]
\[t_{1} = \frac{- 10 + 2}{2} = \frac{- 8}{2} = - 4;\ \ \ \ \]
\[t_{2} = \frac{- 10 - 2}{2} = \frac{- 12}{2} = - 6\]
\[x^{2} - 5x = - 4\]
\[x^{2} - 5x + 4 = 0\]
\[D = ( - 5)^{2} - 4 \cdot 1 \cdot 4 =\]
\[= 25 - 16 = 9;\ \ \ \sqrt{D} = 3.\]
\[x_{1} = \frac{5 + 3}{2} = \frac{8}{2} = 4;\ \ \ \ \ \ \]
\[x_{2} = \frac{5 - 3}{2} = \frac{2}{2} = 1\]
\[x^{2} - 5x = - 6\]
\[x^{2} - 5x + 6 = 0\]
\[D = ( - 5)^{2} - 4 \cdot 1 \cdot 6 =\]
\[= 25 - 24 = 1;\ \ \ \sqrt{D} = 1.\]
\[x_{1} = \frac{5 + 1}{2} = \frac{6}{2} = 3;\ \ \ \ \ \]
\[\ x_{2} = \frac{5 - 1}{2} = \frac{4}{2} = 2\]
\[Ответ:4;1;3;2.\]