\[\frac{4x - 3}{x + 1} + \frac{4 \cdot (x + 1)}{4x - 3} = 5\]
\[Пусть\ \ t = \frac{4x - 3}{x + 1};\ \ x
eq \frac{3}{4};\ \ \]
\[x
eq - 1:\]
\[t + 4\frac{1}{t} = 5\ \ \ \ \ \ \ \ | \cdot t\]
\[t² - 5t + 4 = 0\]
\[t_{1} + t_{2} = 5;\ \ t_{1} \cdot t_{2} = 4\]
\[t_{1} = 4,\ \ t_{2} = 1.\]