\[\frac{4x^{2} - 2x}{5} - \frac{{3x}^{2} - 3}{4} = 0\ \ \ \ \ \ \ \ \ \ | \cdot 20\ \]
\[4 \bullet \left( 4x^{2} - 2x \right) - 5 \bullet \left( 3x^{2} - 3 \right) =\]
\[= 0\]
\[16x^{2} - 8x - 15x^{2} + 15 = 0\]
\[x^{2} - 8x + 15 = 0\]
\[D = ( - 8)^{2} - 4 \cdot 1 \cdot 15 =\]
\[= 64 - 60 = 4\]
\[x_{1} = \frac{8 + \sqrt{4}}{2} = \frac{8 + 2}{2} = \frac{10}{2} = 5\]
\[x_{2} = \frac{8 - \sqrt{4}}{2} = \frac{8 - 2}{2} = \frac{6}{2} = 3\]
\[Ответ:5;3.\]