\[3x^{4} + 16x² - 12 = 0\]
\[Пусть\ \ t = x^{2} \geq 0:\]
\[3t^{2} + 16t - 12 = 0\]
\[D = 256 + 144 = 400\]
\[t_{1} = \frac{- 16 + 20}{6} = \frac{4}{6} = \frac{2}{3};\ \ \]
\[t_{2} = \frac{- 16 - 20}{6} =\]
\[= - 6 < 0\ (не\ подходит).\]
\[Подставим:\ \]
\[x^{2} = \frac{2}{3}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\]
\[x = \pm \sqrt{\frac{2}{3}}\text{\ \ \ \ \ \ \ \ \ \ \ }\]
\[Ответ:\ x = \pm \sqrt{\frac{2}{3}}.\]