\[3x^{3} + 13x^{2} + 13x + 3 = 0\]
\[3 \bullet \left( x^{3} + 1 \right) + 13x(x + 1) = 0\]
\[(x + 1)\left( 3x^{2} - 3x + 3 + 13x \right) =\]
\[= 0\]
\[(x + 1)\left( 3x^{2} + 10x + 3 \right) = 0\]
\[x + 1 = 0 \Longrightarrow x = - 1.\]
\[3x^{2} + 10x + 3 = 0\]
\[D = 10^{2} - 4 \cdot 3 \cdot 3 = 100 - 36 =\]
\[= 64\]
\[x_{1} = \frac{- 10 + \sqrt{64}}{2 \cdot 3} = \frac{- 10 + 8}{6} =\]
\[= \frac{- 2}{6} = - \frac{1}{3}\]
\[x_{2} = \frac{- 1 - \sqrt{64}}{2 \cdot 3} = \frac{- 10 - 8}{6} =\]
\[= \frac{- 18}{6} = - 3\]
\[Ответ:\ x = - 1;x = \ - \frac{1}{3};\ \]
\[x = - 3.\]