\[\frac{1}{x - 3} - \frac{2}{x^{2} + 3x + 9} = \frac{6 + 7x}{x³ - 27}\]
\[x^{2} + 3x + 9 - 2 \cdot (x - 3) =\]
\[= 6 + 7x\]
\[x^{2} + 3x + 9 - 2x + 6 - 6 - 7x =\]
\[= 0\]
\[x^{2} - 6x + 9 = 0\]
\[(x - 3)^{2} = 0\]
\[x - 3 = 0\]
\[x = 3\ (не\ подходит).\]
\[Ответ:нет\ решения.\]