\[\left\{ \begin{matrix} x - 5y = 2\ \ \\ x^{2} - y = 10 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 2 + 5y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (2 + 5y)^{2} - y = 10 \\ \end{matrix} \right.\ \]
\[4 + 20y + 25y^{2} - y - 10 = 0\]
\[25y^{2} + 19y - 6 = 0\]
\[D = 361 + 600 = 961 = 31^{2}\]
\[y_{1} = \frac{- 19 + 31}{50} = \frac{12}{50} = \frac{24}{100} = 0,24;\ \]
\[y_{2} = \frac{- 19 - 31}{50} = - 1.\]
\[\left\{ \begin{matrix} y = 0,24 \\ x = 3,2\ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} y = - 1 \\ x = - 3 \\ \end{matrix} \right.\ \]
\[Ответ:(3,2;0,24);\ \ ( - 3; - 1).\]