Вопрос:

Не выполняя построения, найдите координаты точек пересечения параболы у=х^2–8 и прямой х+у=4.

Ответ:

\[y = x^{2} - 8;\ \ \ x + y = 4\]

\[Запишем\ систему:\]

\[\left\{ \begin{matrix} y = x^{2} - 8 \\ x + y = 4\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = 4 - x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - 8 - 4 + x = 0 \\ \end{matrix} \right.\ \ \]

\[x^{2} + x - 12 = 0\]

\[x_{1} + x_{2} = - 1;\ \ \ \ \ x_{1} \cdot x_{2} = - 12\]

\[x_{1} = - 4;\ \ x_{2} = 3\]

\[\left\{ \begin{matrix} x = - 4 \\ y = 8\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 3 \\ y = 1 \\ \end{matrix} \right.\ \]

\[Ответ:графики\ пересекаются\ в\ \]

\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ точках\ ( - 4;8)\ и\ (3;1).\]

Похожие